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A B S T R A C T

A recurrent theme of both cognitive and network neuroscience is that the brain has a consistent subnetwork
structure that maps onto functional specialization for different cognitive tasks, such as vision, motor skills, and
attention. Understanding how regions in these subnetworks relate is thus crucial to understanding the emergence
of cognitive processes. However, the organizing principles that guide how regions within subnetworks commu-
nicate, and whether there is a common set of principles across subnetworks, remains unclear. This is partly due to
available tools not being suited to precisely quantify the role that different organizational principles play in the
organization of a subnetwork. Here, we apply a joint modeling technique – the correlation generalized expo-
nential random graph model (cGERGM) – to more completely quantify subnetwork structure. The cGERGM
models a correlation network, such as those given in functional connectivity, as a function of activation motifs –
consistent patterns of coactivation (i.e., connectivity) between collections of nodes that describe how the regions
within a network are organized (e.g., clustering) – and anatomical properties – relationships between the regions
that are dictated by anatomy (e.g., Euclidean distance). By jointly modeling all features simultaneously, the
cGERGM models the unique variance accounted for by each feature, as well as a point estimate and standard error
for each, allowing for significance tests against a random graph and between graphs. Across eight functional
subnetworks, we find remarkably consistent organizational properties guiding subnetwork architecture, sug-
gesting a fundamental organizational basis for subnetwork communication. Specifically, all subnetworks dis-
played greater clustering than would be expected by chance, but lower preferential attachment (i.e., hub use).
These findings suggest that human functional subnetworks follow a segregated highway structure, in which
tightly clustered subcommunities develop their own channels of communication rather than relying on hubs.
Cognitive neuroscientists have identified a roughly consistent set of
distinct functional subregions, also known as subnetworks, that are
reliably involved in cognitive functions (e.g., Bressler and Menon, 2010).
These subnetworks are consistent with those identified via community
detection techniques (Power et al., 2011; Yeo et al., 2011) used in
network neuroscience (Medaglia et al., 2015; Betzel and Bassett, 2017;
Sporns, 2011; Bullmore and Sporns, 2009; Bassett and Sporns, 2017).
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This consistency suggests that these subnetworks reflect meaningful
subdivisions of the brain. Understanding how these subnetworks operate
may therefore be crucial to understanding how the brain balances local
versus distributed processing. In the present paper, we model functional
connectivity using the correlation generalized exponential random graph
model (cGERGM, Stillman et al., 2017) in order to better understand the
organizational properties of these subnetworks.
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Table 1
Brief description of each network modeled in the present paper.

Network Function

Auditory Hearing
Subcortical Subcortical structures such as the thalamus, putaman,

and brainstem
Dorsal Attention Top-down influences on attention
Ventral Attention Attention switching
Salience Directing attention to motivationally and emotionally

relevant external stimuli
Cingulo-Opercular Task
Control

Initiating and sustaining task behavior

Fronto-Parietal Task
Control

Top-down exertion of control and executive function

Default Mode Internally generated cognition (though precise function
still debated)
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When studying functional connectivity, researchers first divide the
brain into regions (i.e., nodes) and then gauge connectivity between
nodes via the correlation (or some metric of co-activation, see Smith
et al., 2011) across the time-series, with nodes that correlate more
strongly with one another inferred to be more strongly connected (see
Fig. 1). Here, we restrict our investigation to intracommunity connec-
tions, yielding eight subnetworks responsible for different cognitive
processes (see Table 1).

Despite the central importance of these subnetworks, the principles
that govern their organization remain understudied, with the majority of
investigations focusing on whole-brain as opposed to subnetwork orga-
nizational principles (Bullmore and Sporns, 2009, 2012). We refer
collectively to the organizational principles that describe the patterns by
which small collections of nodes connect to one another as activation
motifs. Current techniques typically quantify a single activation motif in
isolation (Rubinov and Sporns, 2010). For example, the degree to which a
node's neighbors are neighbors with one another is referred to as clus-
tering (thought to quantify intra-community information integration,
Bullmore and Sporns, 2009). Researchers can use these activation motifs
to make inferences about network structure. For instance, using these
techniques, research has found that the whole-brain follows a
“small-world” structure – a configuration that consists of densely
intra-connected communities connected via hubs (i.e., nodes that have
disproportionately high number of connections) that maximizes local
and global network efficiency while minimizing wiring costs (Bullmore
and Sporns, 2012; Bassett and Bullmore, 2017). It remains unclear,
however, whether subnetworks – which are organized to address more
specialized functions compared to the more integrative requirements of
the whole-brain – show similar or different organization to the
whole-brain.

Additionally, while these approaches are useful for investigating
networks across task, time, and individual, their isolated application
carries two major drawbacks. First, activation motifs are often highly
correlated with one another, and may have unexpected interactions that
are only apparent when considering multiple motifs simultaneously.
Second, current techniques are unable to separate the influence of acti-
vation motifs from the influence of anatomical properties – the anatomical
context of the brain that influences connection strength. For example, the
distance between nodes is often strongly related to connection strength
(Honey et al., 2009), and may confound attempts to quantify activation
motifs. Further, many existing techniques provide only a single point
estimate of a given statistic, making it difficult to compare that value
against chance. Finally, although weighted metrics are becoming more
readily available (e.g., Sizemore et al., 2016), many approaches require
thresholding of data (i.e., setting weak connections to 0), thus discarding
Fig. 1. Visual depiction of network construction in the context of resting state functi
node atlas described by Power et al. (2011), which further provides subnetwork mem
20-node atlas of the default mode network described by Bellana et al. (2016a, b). Ce
(averaged across all voxels within the node), yielding a time series for each node. R
relation network.
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potentially important information.
To more comprehensively characterize subnetwork organization, we

use the cGERGM – a new modeling framework that simultaneously
quantifies multiple elements of network architecture in a way that sep-
arates the influence of activation motifs and anatomical properties
(Stillman et al., 2017). Using the cGERGM, we attempt to answer two
related questions. First, we investigated the organizing principles (both
activation motifs and anatomical properties) driving subnetwork orga-
nization. Of particular interest to the present investigation are two acti-
vation motifs – clustering and preferential attachment. Clustering refers
to the tendency for nodes’ neighbors to connect with one another,
thereby forming connected triads. Extensive prior work has shown that
the brain consists of densely clustered communities (i.e., the subnetworks
that are the focus of the present paper Power et al., 2011), and further
evidence suggest this is hierarchical, with the subnetworks themselves
comprised of multiple smaller densely interacting clusters of regions
(Meunier et al., 2010). Based on these findings, we expect to find
significantly greater clustering than would be predicted by chance.
Preferential attachment refers to the tendency of nodes to connect to
other strongly connected nodes across the network (i.e., across the
network, are nodes preferentially attaching to other nodes that have
greater connections). Preferential attachment quantifies the extent to
which hubs are a structural feature of the network and occur greater than
would be expected by chance. While extensive past work has docu-
mented the importance of hubs in the brain (e.g., van den Heuvel and
Sporns, 2011, 2013; Andrews-Hanna, 2012), past work has generally
viewed hubs as a property of a node – if a given node has a large number
of connections compared to the other nodes in the network, that node is
considered a hub. The cGERGM, however, allows us to ask a different
question – is the structure of the network such that hubs are more
onal connectivity. Left: the brain is divided up into nodes. Here, we use the 264
bership of each node, indicated here by their color. In addition to this, we use a
nter: once nodes have been established, we extract the time series for each node
ight: we then correlate these time series to yield the weighted, undirected cor-
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prevalent than would be expected by chance? Some initial evidence
suggest that preferential attachment may not, in fact, be a property of
subnetworks. For instance, our past work using the cGERGM to investi-
gate the default mode network (Stillman et al., 2017) found significantly
greater clustering than would be expected by chance, but significantly
less preferential attachment than would be expected by chance. This
suggests that the default mode network displays “segregated highway” –
a structure organized to promote functional specialization in which
communities build their own direct channels of communication rather
than relying on hubs.

Beyond investigating the organization of each individual subnetwork,
we can investigate similarities and differences across subnetworks. In
particular, it is possible that each subnetwork is organized differently to
address the different challenges of the cognitive process that network
controls. On the other hand, it is also possible that a consistent organi-
zational framework is present across subnetworks, possibly suggesting
that a certain communication structure is optimal for coordination
amongst brain regions to give rise to complex cognitive processes. By
investigating the similarities and differences across subnetworks, we
hope to gain a clearer understanding of how complex cognitive processes
can emerge from the coordination of different brain regions.

1. Methods

1.1. Participants

For the present investigation, we use resting state data of 21 unrelated
healthy young adults (ages 22–35, 10 Female) publicly available from the
Human Connectome Project (HCP) S1200 release, “100 unrelated sub-
jects” list (https://www.humanconnectome.org/, Van Essen et al.,
2013).1
1.2. Scanning parameters

Each participant completed a number of structural, functional, and
diffusion scans. We focus on a single resting state scan (REST1-LR), with
full details of the other scans available on HCP. Acquisition was con-
ducted using a 3-T scanner. Each resting state scan consisted of 1200
functional T2*-weighted blood-oxygen level-dependent (BOLD) multi-
band EPI (Moeller et al., 2010; Feinberg et al., 2010; Setsompop et al.,
2012; Xu et al., 2012) images, with TR of 720ms, TE of 33.1ms, slice
thickness of 2 mm, field of view¼ 208� 180mm, matrix¼ 104� 90,
and flip angle of 52�.
1.3. Data preprocessing

We use the preprocessed data provided by the HCP. These data have
been put through the minimal data preprocessing pipeline (Glasser et al.,
2013). The data is processed for spatial artifacts (spatial distortion
correction, head motion correction, and corrected for B0 distortion),
registered to 2mm MNI space, and subjected to global intensity
normalization (Glasser et al., 2013; Smith et al., 2013). Following this,
these data were subjected to ICA denoising via ICA-FIX (Salimi-Khorshidi
et al., 2014) – an automated ICA based approach to removing noise, with
particular utility for removing motion-induced noise (see Ciric et al.,
2017).
1 Subject numbers: 100307, 100408, 101107, 101309, 103111, 103818,
106016, 108828, 110411, 111312, 111716, 113619, 113922, 114419, 115320,
116524, 499566, 654754, 672756, 751348, 899885. These 21 participants were
selected without regard to demographic or anatomical differences. Our sample
size was selected to balance computational time considerations with having a
sufficiently large sample to draw conclusion about the nature of network or-
ganization across participants.
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1.4. Subnetwork specification and network creation

We use a previously validated atlas which divides the brain into 264
spherical ROIs that served as our nodes (Power et al., 2011). For each ROI
and participant, we extracted all voxels within that ROI and averaged
them, yielding one time-series per ROI per participant. We then regressed
out from these time-series’ the average white-matter time-series, the
average cerebrospinal fluid time-series, and a time-series corresponding
to the mean global signal (Power et al., 2012; Ciric et al., 2017). To gauge
connectivity across these 264 regions for each participant, we then took
the pairwise correlation across all regions, yielding a 264� 264 corre-
lation matrix corresponding to the whole brain network. Finally, to
capture subnetwork structure, we divide the correlation matrix into 12
functional subnetworks delineated by the atlas (Power et al., 2011),
yielding a correlation matrix for each subnetwork. Of these 12, 2 are too
small to possess interesting network structure and also to recover reliable
cGERGM parameters – Cerebellar (4 nodes) and memory/retrieval (5
nodes). As such, we omitted them from the analysis. As the cGERGM
requires large computational resources as the networks increase in size,
for the default mode network we use a 20-node partition (Bellana et al.,
2016a, b) used in our prior work (Stillman et al., 2017) rather than the 58
node network given defined by Power and Colleagues.2 We further omit
here the results of the sensory/somatomotor network (35 nodes, 11 out
of 21 participants converged) and visual network (31 nodes, 18 out of 21
participants converged), as convergence was inconsistent on a reasonable
time-line. We note, however, that the results for these models that suc-
cessfully converged are consistent with the results presented here (and
are presented in the supplement). Finally, we omitted all nodes for which
network assignment was uncertain. This left us with 8 functional
subnetworks.
1.5. The correlation generalized exponential random graph model
(cGERGM)

We model each of these 8 functional subnetworks separately with the
cGERGM across all 21 adults. The cGERGM takes as input a weighted
correlation network (meaning it does not require thresholding of the
data) and models the network as a function of multiple (user-specified)
activation motifs and/or anatomical properties. Here, we consider five
such features – edges, two-stars, triads, Euclidean distance, and hemi-
sphere – however we note one strength of the cGERGM is its ability to
specify nearly any feature the researcher believes may matter in ac-
counting for functional connectivity. The effects of specified anatomical
properties are modeled using a Beta regression of the mean of each
partial correlation weight on the properties of interest (equation (A.3) in
the Appendix). The activation motifs of the normalized partial correla-
tion network are modeled using an exponential family of probability
distributions that parameterize the effects of motifs on the weight of the
edges within the network. The resulting model is a joint probability
distribution on the correlation network with specified motifs and
anatomical properties as covariates (equation (A.4)).

Activation motifs quantify relational patterns that specify how nodes
interact with one another. Here, we discuss three such activation motifs
(see Fig. 2). The first is network density (i.e., "edges"), which measures
the average strength of connections between regions in the network, and
serves as an intercept for the model. The second is the tendency for nodes
to show “preferential attachment,” a phenomenon in which nodes are
more likely to be connected to nodes that are highly connected
2 This specification of the DMN appears to be consistent (though smaller in
scope) to the specification defined by Power and Colleagues – our 20 node
network overlapped at least partially with 24 nodes of the 58-node power atlas.
We further note that there were minor overlaps with one node each from the
visual, salience, and ventral attention networks. However, these overlaps were
fairly minor, constituting only 10, 6, and 2 voxels (respectively).

https://www.humanconnectome.org/


Fig. 2. Activation motifs modeled by the cGERGM for a network x. Left: the edges statistic simply models the average connectivity across the network, and is
equivalent to network density. Middle: two-stars capture preferential attachment – the degree to which nodes are likely to be connected to other nodes that have many
connections. This is quantified by, for each trio of nodes, taking the product of the edges connected to the focal node. In the figure, the graph on the left has high two-
stars (4), compared to the graph on the right (0). This metric will therefore be higher when more nodes are more strongly connected to the same node, and graphs with
high two-stars will thus have more centralized hubs. Right: triads models the degree to which nodes cluster together into tight-knit communities. It is quantified by, for
each trio of nodes, taking the product of all the edges between the nodes.
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themselves. Networks that demonstrate preferential attachment have
non-flat degree distribution – certain nodes that have many connections,
and most others have few connections – and are often described as being
reliant on hubs to integrate information. This is quantified via a metric
called “two-stars”, calculated by, for each trio of nodes, taking the
product of the edges with the focal node. The third motif quantifies the
tendency for two nodes connected to a third to be connected to one
another. This is called “triadic closure” or “clustering,” and is found in
many networks across disciplines and application areas.

Anatomical properties quantify how other attributes of the nodes or
relationships between them might influence connection strength. Here,
we consider two such features. First, we consider the spatial Euclidean
distance between two brain regions. In past studies, the Euclidean dis-
tance has been shown to be strongly related to the connection strength
between two regions (Honey et al., 2009), though recent literature sug-
gests that these relationships may be a consequence of motion-induced
noise (Power et al., 2012; Satterthwaite et al., 2012). We can thus
include a matrix that contains the distances between each pair of nodes in
the cGERGM, and use that to predict how strongly related two nodes are
to one another. We also consider a second anatomical property, which
measures whether or not two regions reside in the same hemisphere, with
the prediction that intrahemispheric connections will be stronger than
interhemispheric connections.

Rather than modeling each feature individually, the cGERGM char-
acterizes the individual effect of each feature through a joint probability
distribution that quantifies the likelihood of the given network as a
function of both activation motifs and anatomical properties. Thus the
network under study is modeled via a parametric probability distribu-
tion, where parameters quantify the unique effect of features specified in
the model. In addition to yielding more informative estimates of network
structure, these distributions can further be used to statistically assess the
degree to which a given activation motif or anatomical property in-
fluences the structure of the network against chance. The cGERGM
therefore allows for testing of the unique contribution of each feature of
interest, controlling for the others, while accounting for all of the
observed data within the correlation matrix.

Typically, models that include both activation motifs and anatomical
properties produce better fit than models that include just one or the
other (Stillman et al., 2017). Therefore, for each network of each
participant, we use the full model with all five features (21 partici-
pants� 8 subnetworks¼ 168 models total).

1.6. cGERGM model fitting overview

The specification of the cGERGM requires two steps (see Appendix A
for a more in-depth description of the mathematical specification of the
cGERGM). First, the edges of the observed correlation network, which
naturally take values on [-1, 1], are normalized as partial correlations
that lie on [0, 1] via a one-to-one multivariate transformation. This is
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done to enable inference as the (unique) partial correlations associated
with a correlation matrix do not suffer from the mathematical constraints
on the correlation matrix itself, such as the positive semidefinite
constraint. The effects of specified anatomical properties are modeled
using a Beta-distribution regression of the mean of each partial correla-
tion weight on the properties of interest, while the activation motifs of
the normalized partial correlation network are modeled using an expo-
nential family of probability distributions that parameterize the effects of
motifs on the weight of the edges within the network. The resulting
model is a joint probability distribution on the correlation network
whose summary statistics are given by the specified motifs and
anatomical properties (equation (A.4)).

To quantify the effects of both the anatomical properties and the
activation motifs, the joint likelihood in equation (A.4) is estimated via
maximum likelihood. As the probability distribution of a cGERGM has an
intractable normalizing constant, Markov Chain Monte Carlo (MCMC)
simulation is utilized to carry out the estimation. For any model in the
cGERGM family, estimation proceeds as follows. First, the estimation
algorithm makes an initial seed for all model parameters. These param-
eters are then used to simulate a large sample of networks from the model
generative process. These networks are used to approximate the log
likelihood of the model for the current set of model parameters.
Parameter estimates are updated according to a greedy update that yields
a higher log-likelihood value given the observed data. This iterative
process is repeated until the parameter estimates converge. Detailed in-
formation about fitting the cGERGM is provided in the Appendix.

1.7. Data statement

All models in this paper were fit using the publicly available R
GERGM software (Denny et al., 2016). The scripts used to generate the
present results, along with each of the eight correlation networks, are
available at the Open Science Framework: osf.io/3fmvj.

2. Results

2.1. Model fit

Before interpreting model coefficients, we first investigate model fit.
This is important because model coefficients are uninterpretable if fit is
poor. To assess fit of each model, we examine whether our model pro-
duces simulated networks that have the same basic properties as the
observed network. To this end, we simulate 500 networks from the
estimated model parameters (Hunter et al., 2008). From these simulated
networks, we can compare whether various structural features of the
network (both those included in the model as well as those that are not)
are similar for the observed and simulated networks. Here, we use five
structural features of the network – triads, two-stars, edges, network
intensity, and degree distribution – to gauge how well our model is
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recreating the observed data. To compare the simulated and observed
values, we generate box-plots (for triads, two-stars, edges, and intensity)
and density plots (for degree distribution) reflecting the values of each
respective statistic over the 500 simulated networks, and compare those
distributions to our observed values. Good fit is achieved when there is a
strong correspondence between the inter-quartile range of the boxplots
and the observed value, and a similar degree distribution for the
observed and simulated networks. We plot all boxplots/density plots for
all networks of a single representative participant in Figs. 3 and 4 (plots
for the other participants can be generated via the code available on
OSF). This participant appears to be achieving good model fit, as the
large majority of the observed values are within the IQR of the simulated
boxplots, and the degree distributions for observed and simulated
roughly match one another. Across all participants, we see similar pat-
terns, with fit summaries across participants given in Table 2. Given these
fit results, the parameters recovered by the model can generally be
thought to be unbiased and to reflect the data generating process for the
subnetworks reasonably well.

As an additional way of visualizing the success of our models, we can
plot the observed networks and compare them to the simulated networks.
For plotting purposes, we find a simulated network that is highly likely
given the estimated model, and then visually compare how our simulated
networks appear relative to the observed network. To find a network that
is highly likely given the model, we again use the 500 simulated net-
works. We then evaluate the approximate likelihood function, given in
Equation (A.5), with each simulated network. We plot the network that
scores the highest on the likelihood function (i.e., the simulated network
most likely to be observed under the estimated model). As can be seen in
Fig. 5, we get decent (though imperfect) recreation of the networks of
interest for a representative participant.
2.2. Parameter results

For each subnetwork, we investigated the parameter outputs gener-
ated by the cGERGM. For each feature specified, the cGERGM provides
(for each participant) both a point estimate and standard error corre-
sponding to the unique influence of that statistic on network organization
(parameter estimates and standard errors are given in Table 3). This thus
allows for inferential testing of the influence of these features relative to
chance. For all features, significant positive parameters correspond to
significantly greater influence of that feature in shaping connection
strength within the network. Similarly, significant negative parameters
correspond to less influence of that feature than would be expected by
chance. Results of the edges term are plotted in Fig. 6, with results for the
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two-stars, and triads parameter estimates plotted in Fig. 7, and the results
for the anatomical properties given in Fig. 8. As there was (in general) a
high degree of consistency across networks, we discuss the results of each
statistic in turn.

Edges. Across all subnetworks, we find a highly consistent pattern
such that the edges term is almost uniformly positive, but with a high
degree of variability. The positive edges effect was significant for the vast
majority of participants and subnetworks, with all participants displaying
a significant edges parameter for every network except for Auditory (43%
non-significant), Ventral Attention (33% non-significant), and Subcor-
tical (5% non-significant). This suggests that, overwhelmingly, these
eight subnetworks are more densely connected than would be expected
by chance. This finding is perhaps unsurprising given that these sub-
networks were defined by partition methods that maximize intra-
community connection while minimizing intercommunity connection.

Triads. As can be seen in Fig. 7, across all eight subnetworks, we find a
highly consistent pattern such that almost every network is demon-
strating a high degree of clustering (i.e., triads parameter greater than 0).
For the larger subnetworks (Cingulo-opercular, Salience, Default Mode,
and Fronto-parietal), every single participants’ triads parameter estimate
was significantly different from 0. The other networks each had some
participants whose triads coefficient was not significantly different than
0 (across all participants, none had significantly negative triads esti-
mates). To investigate overall patterns, we conducted a one-sample t-test
testing whether the mean triads coefficient was different than zero.
Consistent with the results of the larger networks, all four networks were
significantly different from zero, Ventral attention: t(20)¼ 8.05,
p< .001, Dorsal attention: t(20)¼ 13.50, p< .001, Auditory:
t(20)¼ 26.45, p< .001, Sub-cortical: t(20)¼ 6.33, p< .001. Together,
these results provide strong evidence that, in general, the present sub-
networks are displaying higher clustering than would be expected by
chance. This is consistent with extant theorizing on the hierarchical
community organization of the brain. Specifically, past work has sug-
gested that the brain consists of tightly clustered communities (sub-
networks) that themselves consist of tightly clustered subsubnetworks
(Meunier et al., 2010).

Two-Stars. Across all of the subnetworks, we again find a highly
consistent pattern across participants. However, as can be seen in Fig. 7,
this pattern indicated a negative two-stars parameter across subnetworks
(i.e., lower hub use). As with the triads parameter, this pattern was sig-
nificant in every single participant for the larger subnetworks (Cingulo-
opercular, Salience, Default Mode, and Fronto-parietal). As above, to
investigate the significance of the smaller subnetworks, we conducted a
one-sample t-test testing whether the mean two-stars coefficient was
Fig. 3. GOF plots of all networks for a representative partic-
ipant (participant 100307). For each network, 500 networks
are simulated from the output parameters. For each of these
simulated networks, we calculate the four statistics of two-
stars, triads, edges, and intensity to compare to the observed
values. For plotting purposes, we normalize these simulated
values, and then offset them from the observed value. In other
words, in these plots, 0 represents the observed value, and
good fit corresponds to low deviance from 0 – typically, when
the observed value is within the IQR of the simulated value, it
is considered good fit.



Fig. 4. Density plots of observed and simulated connection values for all networks of a representative participant (participant 100307). Values are obtained by
summing the connection value of each node (i.e., the rowsums of a given network). This is a valuable additional metric on which to assess model fit because it captures
not only aggregate patterns in connectivity, but the distributions over connections to individual nodes. Here again, we see a good model fit for most subnetworks.

Table 2
Goodness of fit across all participants for the four parameters of interest for each
network. The value in the cells corresponds to the average absolute deviation
between the observed value and the median of the simulated value. The per-
centage in parentheses corresponds to the percentage of participants whose
observed value was within the IQR.

Network Two-Stars Triads Edges Intensity

Ventral Attention 0.25
(100%)

0.33
(100%)

0.56
(100%)

0.02
(57%)

Dorsal Attention 0.39
(100%)

0.64
(100%)

1.07
(100%)

0.02
(38%)

Auditory 0.67
(100%)

1 (100%) 1.89
(100%)

0.02
(14%)

Subcortical 0.2
(100%)

0.3
(100%)

0.53
(100%)

0.01
(57%)

Cingulo-opercular Task
Control

0.93
(100%)

1.58
(100%)

1.98
(100%)

0.02
(24%)

Salience 1.24
(100%)

1.77
(100%)

3.47
(100%)

0.03 (5%)

Default Mode 1.98
(95%)

2.65
(95%)

5.46
(95%)

0.04 (0%)

Fronto-parietal Task
Control

2.69
(95%)

4.16
(95%)

8.26
(95%)

0.02
(10%)

Fig. 5. Observed networks (left) against simulated networks (right) for all network
observed networks are thresholded at 1/2 of the maximum absolute correlation valu
force-directed graph layout algorithm (Fruchterman and Reingold, 1991). The same p
layouts for ventral attention, subcorical, default mode, and fronto-parietal networks
networks we instead use a circle layout.
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different than zero. Consistent with the results of the larger networks, all
four networks displayed significantly negative parameters across par-
ticipants, Ventral attention: t(20)¼�8.40, p< .001, Dorsal attention:
t(20)¼�14.20, p< .001, Auditory: t(20)¼�27.30, p< .001, Sub-
cortical: t(20)¼�6.46, p< .001 Overall, this suggests that the net-
works are demonstrating anti-preferential attachment, meaning they are
less likely to use hubs than would be expected by chance alone. Unlike
the above findings, the lack of preferential attachment is somewhat
surprising given previous work and research emphasizing the importance
of hubs, at least at the whole brain level. As noted above, this discrepancy
may result from the fact that the present investigation tests whether a
network structurally demonstrates preferential attachment, rather than
whether certain nodes have disproportionate strength of connections.
Our results are consistent, however, with our past work on the default
mode network, and suggest that subnetworks more generally may be
demonstrating segregated highway architecture, a point we return to in
the discussion.

Anatomical properties – Euclidean distance and hemisphere. Unlike the
results for activation motifs – which are largely consistent across sub-
network and participant – results for the Euclidean distance and hemi-
sphere parameters are inconsistent both across subnetwork and across
participants (see Fig. 8). For hemisphere, there appears to be a consistent
s for a representative participant. To determine the positions of each node, the
e and node positions are then determined using the Fruchterman-Reingold (FR)
ositions are then used for the highest likelihood simulated network. The network
appeared very stretched out along one dimension when using FR, so for these



Table 3
Average parameter estimates, average standard errors, and the percentage of participants for whom the parameter was significantly different from 0 for each of the five
features modeled.

Network Edges Triads Two-Stars Hemisphere Distance

Ventral Attention 0.5(0.13) – 67% 5.07(2.84) – 57% �7.82(4.15) – 57% �0.04(0.07) – 29% �0.07(0.04) – 38%
Dorsal Attention 0.7(0.11) – 100% 6.29(2.28) – 81% �9.54(3.35) – 81% �0.04(0.04) – 14% �0.08(0.03) – 57%
Auditory 0.36(0.15) – 57% 8.16(1.59) – 90% �12.36(2.31) – 90% 0.09(0.08) – 29% 0.04(0.04) – 29%
Subcortical 0.21(0.03) – 95% 4.65(2.45) – 57% �7.05(3.65) – 57% �0.02(0.01) – 33% �0.01(0.01) – 52%
Cingulo-opercular Task Control 0.56(0.06) – 100% 8.88(1.32) – 100% �13.4(1.93) – 100% �0.01(0.02) – 19% �0.02(0.01) – 33%
Salience 0.52(0.07) – 100% 9.01(1.18) – 100% �13.62(1.71) – 100% �0.01(0.02) – 14% �0.03(0.01) – 62%
Default Mode 0.65(0.08) – 100% 9.6(0.91) – 100% �14.49(1.29) – 100% 0.07(0.03) – 71% �0.01(0.01) – 19%
Fronto-parietal Task Control 0.55(0.07) – 100% 10.16(0.77) – 100% �15.31(1.13) – 100% 0.05(0.02) – 52% �0.02(0.01) – 62%

Fig. 6. Edges (density) parameter estimates for each subject for each of the eight different subnetworks investigated. Error bars correspond to 95% confi-
dence intervals.
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pattern such that there is a significantly positive effect of hemisphere
(i.e., nodes are more strongly connected when in the same hemisphere)
for the fronto-parietal and default mode networks, but the remaining
networks were inconsistent, with participants displaying significantly
positive, significantly negative, and non-significant effects of hemisphere
on connectivity. If we conduct one-tailed t-tests compared to 0, we find a
significantly positive effect of hemisphere for the Default Mode
(t(20)¼ 6.74, p< .001), Fronto-Parietal (t(20)¼ 5.87, p< .001), and
Auditory (t(20)¼ 3.79, p¼ .001) subnetworks, a significantly negative
effect for the Dorsal Attention (t(20)¼�3.74, p< .001), and Subcortical
30
(t(20)¼�3.61, p¼ .002), networks, and non-significant effects for the
Cingulo-Opercular, Salience, and Ventral Attention networks (ps� .15).
Thus, it appears the influence of hemisphere is dependent on the sub-
network of interest.

Distance was similarly inconsistent across individual and subnetwork,
with all networks having between only 20% and 62% of individual
subject parameters significant. Notably, and in contrast to hemisphere, if
we once again conduct t-tests against 0, we find a consistent finding
across all subnetworks except for auditory such that there is a signifi-
cantly negative influence of distance – in other words, the further apart



Fig. 7. Two-stars (preferential attachment/hub use, blue, negative points) and triads (clustering, red, positive points) parameter estimates for each subject for each of
the eight different subnetworks investigated. Error bars correspond to 95% confidence intervals.
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two nodes, the less strongly connected they are (Ventral Attention,
t(20)¼�3.18, p¼ .005; Dorsal Attention, t(20)¼�5.36, p< .001;
Subcortical, t(20)¼�4.80, p< .001; Cingulo-Opercular Task Control,
t(20)¼�3.07, p¼ .006; Salience, t(20)¼�6.80, p< .001; Default Mode,
t(20)¼�2.13, p¼ .05, Fronto-Parietal Task Control, t(20)¼�6.63,
p< .001. The auditory network, in contrast, had a significantly positive
distance parameter, t(20)¼ 2.52, p¼ .02.

3. Discussion

Quantifying the organization of the many functional subnetworks of
the human brain is critical to understanding how regions within these
subnetworks organize to give rise to emergent cognitive processes. We
used the correlation generalized exponential random graph model
(cGERGM) to simultaneously model organizing principles for eight
functional subnetworks of the human brain. Across all eight functional
subnetworks, we found remarkably consistent influences of activation
motifs, such that all subnetworks displayed greater clustering than would
be predicted by chance, and less preferential attachment (i.e., hub usage)
than would be expected by chance. Nearly all individual subjects’ net-
works display this pattern, suggesting this network configuration is
relatively robust. Additionally, across all networks we find significantly
greater edge strength (i.e., density) than would be expected by chance.
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Further, we found weak but suggestive evidence that the greater the
Euclidean distance between nodes, the weaker their connection, though
we note that this effect only reached significance when averaged across
subjects. Interestingly, there were no consistent effect for hemisphere,
with certain networks showing stronger intrahemispheric connections,
others showing stronger interhemispheric connections, and some
showing no significant differences.

3.1. Using cGERGM to probe network structure

One notable finding is the high degree of consistency we find in the
activation motifs across all of our subjects and subnetworks. This con-
sistency suggests that heightened clustering and reduced preferential
attachment may be optimized for subnetworks to coordinate to give rise
to specific cognitive processes. In practice, such an organization might
resemble densely intraconnected communities that have built their own
communication networks between themselves, and may be optimized for
function-specific coordination between brain regions (Braunstein et al.,
2007; Stam et al., 2014; Tewarie et al., 2015).

The present results further demonstrate how the cGERGM can be used
to quantify the unique contributions of different influences of network
structure. One natural question is to ask how cGERGM parameters
correspond to existing descriptive metrics commonly used to quantify



Fig. 8. Parameter estimates for the impact of hemisphere (red) and spatial distance (blue) on each of the eight subnetworks tested. Error bars correspond to 95%
confidence intervals.
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brain networks. While future research should substantiate the link be-
tween the cGERGM and existing techniques, we urge caution when
comparing cGERGM parameters to descriptive statistics. For instance, it
may seem natural to compare the triads parameter in the cGERGM of a
network with a descriptive statistic like the number of triads or the
clustering coefficient in the same network. However, the cGERGM
parameter value quantifies the effect of the variable on the generation of
the network, whereas descriptive statistics summarize features of a
network. Furthermore, the parameter estimates take into account vari-
ability in the observed network as well as interactions among other
variables in the model.

Additionally, two unanswered questions are whether these subnet-
work properties – high clustering and low preferential attachment – are
distinct from those of the whole brain, and whether they generalize to
other levels of coarseness or granularity. Regarding the first question: one
possibility is that the whole brain, due to the relative importance of
integration, would show greater preferential attachment than we see at
the subnetwork level. The sparse connections between subnetworks of
the brain likely plays an important role in its overall topology, and it
leaves open the possibility that the whole-brain may show markedly
different network structure than that of the subnetworks. However, it is
also possible that the whole-brain mirrors subnetwork structure – in
other words, although the whole-brain makes use of hub regions, it may
32
not show preferential attachment at the level of nodal organization.
While the cGERGM is not yet equipped to run networks of the size
required for full-brain investigations, we are currently working on
extending the capabilities of cGERGM so that we can address these
questions directly.

Second, whether our results generalize to more sparse or granular
subnetwork partitions will similarly be more answerable in time.
Studying organizational principles at different (spatial) scales has
recently been recognized as crucial for a complete understanding of the
structure of brain networks (Betzel and Bassett, 2017), and initial find-
ings suggest both consistencies and differences when investigating
network structure at different scales. Therefore, one possibility is that the
same general structure appears across spatial resolution of subnetworks.
For instance, past work has suggested that the brain demonstrates hier-
archical modularity (Meunier et al., 2010) – the brain is divided into
densely connected subnetworks, which themselves contain densely
connected subnetworks. We might thus predict high clustering regardless
of the level of granularity of the subnetworks. On the other hand, it is also
possible that, as specifications become more granular, the operation of
the subnetwork may more closely reflect the whole-brain in requiring
integration across more specialized sub-communities. As we note above,
it remains to be seen whether the whole-brain indeed shows
network-level hub use (i.e., preferential attachment), but if so, we might
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expect more granular subnetwork specifications to similarly show
heightened (as opposed to decreased) preferential attachment. Finally,
one strength of the cGERGM is that it can be adapted to hierarchical
implementations, meaning future research may be able to simultaneously
model a given network at multiple levels of resolution. We encourage
future research using the cGERGM across multiple levels of spatial
resolution.

3.2. The role of hubs

While previous investigations have emphasized the importance of
hubs for network organization in the brain, the present work suggests
that, at least for functional subnetworks, hub use is actually occurring
less frequently than would be expected by chance. One possible expla-
nation for this discrepancy may be the level of analysis that researchers
studying hubs have focused on. In particular, past work has often looked
at hubs at the level of the node – for instance, by identifying a node as a
hub based on degree (Buckner et al., 2009; Cole et al., 2010; Andrew-
s-Hanna et al., 2010), in which hubs are identified based on the number
or strength of connections relative to other nodes (for alternative ap-
proaches, see Power et al., 2013). In contrast, our approach investigates
the propensity of nodes across the network to be connected to more
popular (i.e., hub) nodes – in other words, as a network property rather
than as a property of a single node. This distinction may be important
going forward: hub nodes are clearly important within the brain, but
their presence does not necessarily imply the network is organized to use
hubs.

3.3. The impact of distance

While initial investigations found strong relationships between
Euclidean distance and the strength of functional connectivity (Honey
et al., 2009), more recent evidence suggest those may be primarily driven
by motion-related artifacts (Power et al., 2012, 2015). Indeed, an early
version of the present investigation that did not take stringent ap-
proaches to deal with motion found much stronger effects of distance on
connectivity. We note, however, that our results can be interpreted as
weak evidence for an effect of distance on connectivity. Specifically,
although the distance parameter was not consistently statistically sig-
nificant for any subnetwork at an individual level, collapsing across
participants revealed a clear pattern of distance influencing connection
strength for every network except the auditory network. While much of
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the relationship between distance and connectivity may be due to motion
artifacts, the present data provides some initial evidence that the dis-
tance–connectivity link may still exist. Future research should investigate
this possibility using more comprehensive approaches to accounting for
noise, such as making sure nodes are not closer than 20mm apart, as
these regions can have artificially inflated functional connectivity due to
factors such as physics and vasculature (Power et al., 2011).
3.4. Using cGERGM to inform computational models of distributed
cognition

One implication of the present study is to provide tools for neuro-
scientists to more deeply understand how collections of nodes interact in
order to give rise to complex cognitive processes. In particular, by
isolating the impact of specific activation motifs, researchers can test
computational frameworks that attempt to understand cognitive pro-
cesses via how brain regions organize (both in subnetworks and the
whole brain). For instance, cGERGM allows for testing between models
that emphasize either complex feedback loops, feedforward systems, or
systems that integrate information at centralized hubs. Further, beyond
understanding how different activation motifs describe connectivity,
researchers can use cGERGM to test specific hypotheses about how
different regions interact. Specifically, researchers can develop their own
anatomical properties that reflect expected communication patterns be-
tween regions, and model those while accounting for other anatomical
properties as well as activation motifs. Overall, we believe cGERGM
opens the door for researchers developing models of specific cognitive
phenomena to be informed and constrained by how communication is
actually occurring across these regions, thus increasing the biological
plausibility of these models. We invite future research using cGERGM in
computational neuroscience.

Data and code availability statement

All data used in the present study were from the publicly available
Human Connectome Project (HCP) S1200 release, available at htt
ps://www.humanconnectome.org/. We use the following subjects from
the S1200 release: 100307, 100408, 101107, 101309, 103111, 103818,
106016, 108828, 110411, 111312, 111716, 113619, 113922, 114419,
115320, 116524, 499566, 654754, 672756, 751348, 899885. Data and
scripts are available at the Open Science Framework, osf.io/3fmvj.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2019.03.036.

Appendix A. Technical Details on the cGERGM

We now provide mathematical details of the cGERGM. First, we explain the model in general and how to fit the model using maximum likelihood
estimation. We next explicitly describe the models that were fitted in this manuscript thereby linking the mathematical notation with the variables
utilized in our study.
The Model

Formally, the cGERGM is a joint probability distribution that characterizes the network and exogeneous structure of an n� n correlation matrix ρ ¼
ðρi;j : i < j 2 1;…;nÞ. Entries ρij 2 ½�1;1� and ρij ¼ ρji for all i and j. The primary difficulty of directly analyzing ρ lies in the fact that correlation matrices
must be non-negative definite. Without accounting for this mathematical constraint, models can lead to inferential false positives due to artifacts in the
data (Pourahmadi, 2011). Thus, for valid inference of ρ, we would like a model that ensures that estimates, say ρ̂, are also non-negative definite. The
cGERGM provides a family of models for a random matrix ρ 2 ½�1; 1�n�n that (i) upholds the non-negative definite constraint of ρ, (ii) describes the
relational (network) structure of ρ, and (iii) describes the relationship between the entries of ρ and a collection of potentially useful predictors z1;…;zq.

Let m ¼ nðn� 1Þ=2 be the total number of unique entries in ρ. The formulation of the cGERGM requires three steps, described next. First, the
relational features of ρ are represented by a network on the unit interval x 2 ½0;1�m. The user specifies a vector of features hðxÞ of length p < m that
describe the structural patterns of the graph x. Once the features have been specified, the bounded network x is modeled by the joint density function

https://www.humanconnectome.org/
https://www.humanconnectome.org/
https://doi.org/10.1016/j.neuroimage.2019.03.036
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fXðxjθÞ ¼
exp θThðxÞR � T � ; (A.1)
� �
½0;1�mexp θ hðzÞ dz

where θ is a p - dimensional vector of parameters that quantify the effects of the network features hðxÞ on the likelihood of the graph x.
In the second step, the vector of unconstrained partial correlations ϕ ¼ ðϕij : i < j 2 ½n�Þ 2 ½�1;1�m is used to capture the exogeneous structure of ρ.

The matrix x is mapped to the partial correlations ϕ via the transformation xij ¼ Tijððϕij þ 1Þ=2
���μij;αÞ, where Tijð�

���μij; αÞ is the cumulative distribution

function of a Beta distribution with mean μij and scale parameter α. Let T : ℝm → ½0; 1�m be defined as the m-dimensional vector Tðϕjμ;αÞ ¼ ðTijðϕij

���μij;αÞ;
i < j 2 ½n�Þ. Then ϕ is a random vector from the probability density function fΦðϕjθ;μ;αÞ, given by

fΦðϕjθ; μ; αÞ ¼ fX

�
T
�
ϕþ 1
2

�����θ�Y
ij

tij

�
ϕþ 1
2

����μij; α�

tij
�
w
��μij; α� ¼ ΓðαÞ�1� wij

�ð1�μijÞα�1

Γ
�
μijα
�
Γ
��
1� μij

�
α
� wμijα�1

ij ; (A.2)

where ΓðtÞ ¼ R ∞
0 x

t�1e�xdx is the gamma function defined for t > 1 and wij 2 ð� 1; 1Þ. A notable property of (A.2) is that when the partial correlation
network ϕ does not contain any network structure, i.e. when θ ¼ 0, then the m components of ðϕþ 1Þ=2 are independent samples from a Beta(μij;α)
distribution, where μij 2 ð0;1Þ is the expected value of ðϕij þ 1Þ=2 and α is the precision of the distribution.

Let zℓ be a vector of dyadic observations zℓ ¼ ðzijðℓÞ : i < j 2 ½n�Þ for ℓ ¼ 1;…;q. The effect of each predictor on ϕ is quantified using a generalized
linear model for the mean μ of ϕ:

logit
�
μij
� ¼ β0 þ

Xq
ℓ¼1

βℓzijðℓÞ (A.3)

The regression model in (A.3), together with the Beta density tijð�
��μij; αÞ is well-studied and generally referred to as Beta regression (Cribari-Neto and

Zeileis, 2010). The final step in defining the cGERGM relies on the relationship between the partial correlation matrix ϕ and its associated correlation
matrix ρ for the collection of n brain regions. Let ϕj jþk denote the partial correlation between region j and jþ k given regions jþ 1;…; jþ k� 1 for k � 2.
A well-known result in multivariate statistics is that there exists a one-to-one mapping between ρ and ϕ (Anderson, 1962). For brevity, we do not write
out the details of this transformation; and simply represent this mapping from ρ to ϕ by ρ ¼ gðϕÞ. Then the Jacobian of this transformation, as shown by
Joe (2006), is given by�����JðcÞ

����� ¼
"Yn�1

i¼1

�
1� c2i iþ1

�n�1Yn�2

k¼2

Yn�k

i¼1

�
1� c2i iþk

�n�k�1

#�1=2

Applying the inverse probability transform to the density in (A.2), we can generate a non-negative definite correlation network ρ from the density:

fRðρjθ; μ; αÞ ¼ fΦ
�
g�1ðρÞ��θ; μ; α� ��J�g�1ðρÞ���;

In summary, for fixed parameters θ ¼ ðθ1;…;θpÞ, β ¼ ðβ0;…;βqÞ, and α > 0 the cGERGM model for a correlation network ρ on n brain regions is
described by the following generative process

ρ � fRð �jθ; μ; αÞ (A.4)

logit
�
μij
� ¼ β0 þ β1zijð1Þ þ…þ βqzijðqÞ:

Maximum Likelihood Estimation of the cGERGM

Given an observed correlation network ρ, a collection of exogeneous predictors z1;…; zq and a p-dimensional vector of network summary statistics
hðxÞ, one can fit the cGERGM in model (A.4) via maximum likelihood estimation of the parameters θ and β. To do so, the observed correlation network ρ
is first transformed to its representative partial correlation matrix ϕ via the one-to-one transformation ϕ ¼ g�1ðρÞ described above. The partial cor-
relations are then scaled to the unit interval. Let ϕ	 represent these scaled values. Then, ϕ	

ij ¼ 1
2 ðϕij þ 1Þ. Given ϕ	 the maximum likelihood estimators

(MLEs) of the unknown parameters θ and β, denoted by θ̂ and β̂, respectively, are the values that maximize the joint log likelihood arising from (A.2) and
(A.3):

ℓðθ; β j ϕ	Þ ¼ θThðTðϕ	jβÞÞ � log CðθÞ þ
X
ij

log tijðϕ	jβÞ; (A.5)

where

CðθÞ ¼
Z
½0;1�m

expðθ'hðzÞÞdz:
34
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In equation (A.5), note that tijðϕ	jβÞ is the Beta probability density function evaluated at the scaled value ϕ	
ij given parameters μij and α (expressed in

(A), and Tðϕ	jβÞ is the joint cumulative distribution of a Beta distribution with mean μij. Here, α is a nuisance parameter that is a function of μij, and μij is
related to the regression coefficients β through the Beta regression model in (A.3).

The maximization of (A.5) can be achieved through alternate maximization of βjθ and θjβ. One first provides an initial value θð0Þ. These values are
initialized following the method of Hummel et al. (2012), where an initial guess is refined by slowly changing the objective to be closer to the observed
network, allowing the optimizer to function more effectively on the highly uneven likelihood surface. Then the maximum likelihood estimators are
calculated by iterating between the following two steps until convergence.

Maximum Likelihood Estimation of the cGERGM
Given: Scaled partial correlations ϕ	; network statistics hðxÞ; exogenous regressors z1;…; zq; initial value θð0Þ.
For r � 1, iterate until convergence:

1. Given θðrÞ, estimate βðrÞ
��θðrÞ:

βðrÞ ¼ argmaxβ

 
θðrÞhðTðϕ	jβÞÞ þ

X
ij

log tijðϕ	jβÞ
!
: (A.6)

2. Set by ¼ Tðϕ	��βðrÞÞ. Then estimate θðrþ1Þ��βðrÞ:
θðrþ1Þ ¼ argmaxθ

�
θThðbyÞ � log CðθÞ�: (A.7)

The maximization in (A.6) is accomplished numerically using gradient descent, though any hill climbing algorithmwill suffice. The maximization in
(A.7) is challenging due to the computational intractability of the normalization constant CðθÞ. The Metropolis-Hastings (M-H) simulation procedure
from Wilson et al. (2017) is used to approximate this constant. For iteration r, the M-H procedure simulates networks based on the current parameter
estimates ðθðrÞ; βðrÞÞ via an acceptance-rejection algorithm based on a truncated normal proposal distribution. Networks continue to be simulated until
network statistics of the simulated networks is detected are deemed stationary. The constant CðθÞ is approximated by averaging over the simulated
networks.

Once the parameter updates from (A.6) and (A.7) converge within an acceptable tolerance, the maximum likelihood estimators θ̂ and β̂ are set to the
last iteration's values. Standard errors are determined through M-H simulation of correlation networks under the fitted values. Furthermore, correlation
networks can be readily simulated from the joint distribution in (A.4) using M-H given the fitted parameters θ̂ and β̂. Maximum likelihood estimation
and inference of the cGERGM can be done in the publicly available R package GERGM (Denny et al., 2016).
Model Specification in this Study

For each adult that was analyzed, we fit the cGERGM to the correlation matrix arising from resting state fMRI. In the context of our mathematical
notation above, we fit the cGERGM separately to 21 adult correlation matrices ρ1;…ρ21. For each adult, the cGERGMwas fit with five activation motifs,
three of which were endogenous network-based predictors, and the remaining two were exogeneous predictors. The endogeneous predictors, h1ðxÞ;
h2ðxÞ, and h3ðxÞ, were the total density of edges, total density of two stars, and the total density of triads, respectively. The exogeneous predictors, z1; z2,
were the Euclidean distance between pairs of regions and the hemisphere location of each region, respectively. Fitting the cGERGM with these motifs
specified provided estimators for their parameters in the model, θ1; θ2; θ3; β1; and β2, which are shown in Figs. 6–8.
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