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The ability to expand and contract one’s mental horizons allows people to regulate toward ends that are
both distant and near. One challenge that people face when regulating toward distant relative to near ends
is the lack of information about detailed specifics. In response, construal level theory (CLT) proposes that
people engage in high-level construal—a representational process that highlights the essential properties
of events that are invariant across potential instantiations. To tailor responses to more immediate events,
however, CLT proposes that people engage in low-level construal—a representational process that
highlights idiosyncratic specifics that distinguish events from one another. The present article uses
network neuroscience to investigate the neurocognitive mechanisms for these representational processes.
While undergoing fMRI, participants were instructed to think about the distant versus near future, and
completed tasks that directly manipulated high-level versus low-level construal. Thinking about the
distant future and engaging in high-level construal both promoted integration across the network (indexed
by global efficiency). Thinking about the near future and engaging in low-level construal promoted
segregation within the network (indexed by clustering coefficient). These are the first findings to
document how the brain reconfigures to support the expansion versus contraction of one’s mental
horizons, and provides new insight into the neural mechanisms that help people regulate toward distant
versus near ends.
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The ability to expand and contract one’s mental horizons allows
people to regulate toward ends that are both remote and immediate
(Atance & O’Neill, 2001; Schacter & Addis, 2007; Suddendorf &
Corballis, 2007). Planning, for example, requires people to expand
their regulatory scope, using their expectations of what might
happen in the distant future to guide decisions and actions in the
here-and-now. Behavioral execution, by contrast, requires attun-
ement to local cues and tailoring of action to suit present condi-

tions. This modulation of regulatory scope not only allows people
to transcend direct experience and orient to more distant ends, but
also to immerse and be responsive to events in one’s immediate
environment.

A central challenge to thinking about events that are psycho-
logically distant—that is, those removed from direct experi-
ence—is the lack of reliable detailed specifics. Construal level
theory (CLT; Liberman & Trope, 2008, 2014; Trope & Liberman,
2003, 2010) proposes that people address this challenge by con-
struing distant objects and events in terms of the essential and
invariant properties that are unlikely to change across instantia-
tions—a representational process referred to as high-level con-
strual. As objects become closer, CLT proposes that people con-
strue events in terms of the detailed and idiosyncratic information
that becomes increasingly available—a representational process
referred to as low-level construal. This relationship between dis-
tance and construal is hypothesized to be overgeneralized—evi-
dent even when equivalent information is known about psycho-
logically distant versus near events (Bar-Anan, Liberman, &
Trope, 2006). In this way, high-level versus low-level construal are
the psychological mechanisms by which people expand versus
contract their regulatory scope.

Construal level theory proposes that key to high-level construal
is cognitive abstraction—the treatment of distinct entities as inter-
changeable and substitutable (Liberman & Trope, 2008, 2014;
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Trope & Liberman, 2010). Understanding that fish, trees, and
insects are all examples of “living things,” for example, requires
psychological processes that treat each entity as equivalent exam-
ples of a broader category. By promoting the identification of
essential commonalities across multiple dimensions, abstraction
facilitates the integration of disparate content that may not be
directly comparable along any single dimension (Malkoc, Zauber-
man, & Ulu, 2005). By contrast, key to low-level construal is
concretization. By highlighting the local and specific features that
render an object distinct, low-level construal facilitates the gener-
ation of idiosyncratic representations that treat each entity as
unique. Thus, CLT suggests that whereas high-level construal
requires integration across disparate inputs and types of informa-
tion to facilitate the identification of essential invariants, low-level
construal requires specialization and segregation to facilitate the
identification of detailed idiosyncrasies. No research to date, how-
ever, has provided direct neuro-cognitive evidence for the pro-
posed role that integration and segregation play in supporting
high-level versus low-level construal, and the concurrent expan-
sion versus contraction of regulatory scope, respectively.

Network neuroscience—a branch of neuroscience that attempts
to understand emergent cognitive phenomena by using graph the-
ory tools to quantify the complex interactions across many brain
regions (Barrett & Satpute, 2013; Bassett & Sporns, 2017; Bull-
more & Sporns, 2009; Medaglia, Lynall, & Bassett, 2015; Sporns,
2010; see Figure 1)—has greatly expanded researchers’ ability to

examine integration versus segregation within the brain (Deco,
Tononi, Boly, & Kringelbach, 2015; Shine & Poldrack, 2018;
Sporns, 2013). By quantifying the connectivity strength between
collections of regions, researchers can quantify the degree of
integration (e.g., how readily information can traverse the net-
work—a property indexed by global efficiency) or segregation
(e.g., how densely interconnected nodes are with their neighbors,
a property indexed by the clustering coefficient; see Figure 2).

The balance between integration and segregation, however, is
dynamic, shifting across individuals and tasks. For instance, indi-
viduals with higher IQ exhibited evidence of greater integration
(indexed via whole-brain global efficiency), particularly among
frontal and parietal regions (van den Heuvel, Stam, Kahn, &
Hulshoff Pol, 2009). This finding not only demonstrates the dy-
namic nature of these metrics at the whole-brain level, but further
provides support for prior theories of intelligence that emphasize
the importance of integration across the brain network (Jung &
Haier, 2007). Subsequent research has similarly found that inte-
gration and segregation shift as a function of task (for a review, see
Shine & Poldrack, 2018). For instance, Cohen and D’Esposito
(2016) demonstrated integration and segregation vary as a function
of task, with motor execution tasks promoting segregation, and
working memory tasks promoting integration across the whole-
brain network. These results suggest that the brain may dynami-
cally reorganize to reflect the cognitive demands of the task at
hand.

This dynamism suggests that, if integration and segregation are
indeed central to high- and low-level construal (respectively), we
would predict brain networks to reorganize to promote global
efficiency or clustering coefficient when task demands induce
high- versus low-level construal (respectively). Previous work
provides some indirect support for this hypothesis. Segregation is
promoted by, and predicts performance on, motor tasks (Bassett,
Yang, Wymbs, & Grafton, 2015; Cohen & D’Esposito, 2016; Ma,
Calhoun, Eichele, Du, & Adalı, 2012). Such tasks require tailoring
one’s actions to the specifics of the immediate environment and
may thus be viewed as requiring low-level construal. Integration,
in contrast, is enhanced during an N-back task (Cohen &
D’Esposito, 2016), which requires integrating visual inputs with
information not perceptually available, and may thus be viewed as
requiring high-level construal. Finally, tasks that require traversing
psychological distance via perspective taking (i.e., social distance;
Parkinson, Liu, & Wheatley, 2014) similarly promote whole-brain
integration (Shine et al., 2016). Together, these studies provide
preliminary evidence that high-level construal promotes integra-
tion, whereas low-level construal promotes segregation.

To provide a direct test, we reanalyzed an existing dataset
(Stillman, Lee, et al., 2017) in which participants completed two
tasks while undergoing fMRI—one that directly manipulated con-
strual level and one that manipulated expansive versus contractive
regulatory scope via a temporal imagery manipulation (see Figure
3). We next constructed graphs that correspond to the functional
connectivity patterns (assessed via time-series correlation) across
152 brain regions during different conditions of the two tasks (see
Figure 4). Finally, we probed the integration and segregation of
these networks (via global efficiency and clustering coefficient,
respectively) to make inferences about the organizational proper-
ties of the brain under different levels of construal (Medaglia et al.,
2015). We predicted that the brain network reconfigures to en-

Figure 1. Flowchart of network construction using toy data. (A), the
brain is divided up into a series of nodes (indicated by the 9 circles). (B),
the time series for each node is extracted and (C) correlated with one
another to produce an n � n correlation matrix, where n is equal to the
number of nodes (9, in this case). In the matrix here, each point corre-
sponds to the correlation between two regions, with darker colors corre-
sponding to stronger correlations. Finally (D), these correlation matrices
are then thresholded to produce a binary (on or off) connection, yielding a
binary undirected network.
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hance integration versus segregation when people engage in high-
level versus low-level construal, respectively. We should also
expect similar modulation of the brain network when people
respond to expansive versus contractive regulatory demands—
functions that are supported by high-level versus low-level con-

strual—such as when imagining the distant versus near future
(respectively).

Method

Participants

Thirty right-handed participants (21 female, ages 18–30) were
paid $25 for participation (sample size derived from Spunt &
Adolphs, 2014). All participants provided informed consent, and
all protocols were approved by the Ohio State IRB.

Why–How Task

To manipulate construal level, we implemented the why–
how localizer developed by Spunt and Adolphs (2014). Partic-
ipants responded yes/no to image– question pairs that required
participants to consider either the superordinate (high-level
“why”) goal that the action in the image served (e.g., “Is this
person helping someone?”) or the subordinate (low-level
“how”) means used to accomplish that action (e.g., “Is this
person pushing a button?”). Each block (16 total) began with a
question prompt for 2 s (e.g., “Is this person helping some-
one?”), and participants responded “yes” or “no” via a button
box during the presentation of each of 8 images (“yes” was the
correct answer for 5 questions). Images were displayed for 1.75
s, followed by a reminder of the question prompt for .35 s.
Blocks concluded with 2 s of fixation. Each image was repeated
twice so that the same image was presented for both “why” and
“how” question prompts. We selected one randomized presen-

Figure 2. Depiction of segregation (left) and integration (right). Segre-
gation, indexed via clustering coefficient (left), refers to the tendency for a
node’s neighbors to be connected with one another (i.e., closed triads). If
the gray node is connected to all three black nodes (indicated by solid black
lines), the clustering coefficient will increase with the addition of each
dashed connection (i.e., the dashed connections changing from 0 to 1).
Specifically, clustering coefficient is computed by taking the average
proportion of closed triads (i.e., nodes whose neighbors are neighbors of
each other vs. not) across all nodes. Integration, indexed via global effi-
ciency (right), refers to the average distance between two nodes in a graph,
and is quantified via the inverse of the average number of connections
needed to bridge two nodes. For instance, the distance between the gray
node and the white node is four, but if the dashed connection is included,
the distance drops to three, thereby increasing global efficiency of that
node pairing from ¼ to 1⁄3. Equations for each metric are provided in the
online supplemental material.

Figure 3. Schematic of the why–how task (top) and temporal imagery task (bottom). In the why–how task,
participants identified whether the behavior depicted in a picture corresponded to one described by question
prompts. Question prompts focused participants on the goals achieved by an action (high-level why) or means
used to perform that action (low-level how). Each prompt was followed by 8 images, to which participants
responded “yes” or “no.” Question prompts reappeared between each image for .35 seconds. Participants saw 8
pictures per block, and there were 16 blocks in total. In the temporal imagery task, participants were asked to
visualize themselves engaging in various actions either tomorrow (temporal proximity) or 5 years from now
(temporal distance) in a block design. In each block (6 total), participants visualized 5 different actions for 8
seconds each. See the online article for the color version of this figure.
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tation order for all participants optimized to maximize design
efficiency (Spunt & Adolphs, 2014).

Temporal Imagery Task

Participants visualized actions (e.g., reading a book) either
tomorrow (temporal proximity) or five years from now (tem-
poral distance). As visualizing distant relative to proximal

events may be more difficult, we attempted to equate the
accessibility and availability of distant versus near future
thoughts by asking participants to imagine what their lives
would look like in five years prior to entering the scanner, and
before the start of the run. Participants then completed alter-
nating blocks (6 total) in which they imagined near and distant
future actions. Each block consisted of 5 trials, with each trial
lasting 8 s. In between blocks was 5 s of fixation followed by

Figure 4. Overview of the present data. (A), we use a 152-node atlas described in Power and colleagues
(Power et al., 2011), which further specifies subnetwork membership for each node, plotted here using
BrainNet Viewer (Xia, Wang, & He, 2013). (B), the time series for each node is extracted across the blocks
of interest (e.g., why blocks in the why– how task), and correlated with one another to produce a 152 � 152
correlation matrix. In the matrix here (depicting average correlation of the “why” blocks with other
conditions given in Figure S1), each point corresponds to the correlation between two regions, with darker
red corresponding to more positive correlations, and darker blue corresponding to more negative correla-
tions. (C), these correlation matrices are then thresholded to produce a binary (on or off) connection,
yielding a binary undirected network. The networks displayed here were derived by averaging together
participants’ correlation matrices for the condition of interest, then thresholding by setting the top 10% of
connection strength to 1 and the remaining to 0. For reference, nodes are color-coded according to their
subnetwork membership as suggested by the atlas. See the online article for the color version of this figure.
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5 s of a prompt that read “please imagine the next events
occurring TOMORROW [FIVE YEARS FROM NOW].” We
randomized (between participants) the starting block, as well as
whether the why/how or temporal imagery task was completed
first.

Network Construction and Analysis

Acquisition and preprocessing. Full details of fMRI acqui-
sition, preprocessing, and motion correction are given in the online
supplemental material.

Connectivity matrices. We used a parcellation of the brain
(Power et al., 2011) that divides the brain into 264 nodes. To
address concerns that 264 nodes may represent too large a network
for the number of time points that we recorded, we reduced the
network to 152 nodes (see Figure 4) by retaining only nodes of
subnetworks that we hypothesized would respond to our manipu-
lations.1 To further address concerns that this may still constitute
too large a network, we took two random samples from these 152
nodes: one that sampled approximately one third of the nodes from
each subnetwork in order to maintain the essential structure of the
subnetwork (totaling 51 nodes), and one that retained 50 nodes at
random (19 nodes of overlap, see Table S1 in the supplemental
materials). Connectivity profiles across nodes were obtained via
the CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012).
For each task and for each participant, we inputted into CONN (a)

the preprocessed data from the two functional runs (corresponding
to the two different tasks), (b) the time series information for each
block (onset, duration, and which condition the block belonged to),
and (c) 6 motion parameters, 1 time series corresponding to each
of white matter, cerebrospinal, and average gray-matter activity
(Ciric et al., 2017; Power, Barnes, Snyder, Schlaggar, & Petersen,
2012), to serve as covariates. We then convolved the time series
for a specific condition (e.g., “why” blocks) with the canonical
hemodynamic response function, extracting and concatenating the
corresponding time points. Repeating this process with all condi-
tions yielded a 4-D image for each participant for each condition
(62 and 57 total time points for why/how and distance/proximity,
respectively). Each time series was then aggregated using the three

1 For subnetwork identification, we use the labels given by Power and
colleagues (2011). The retained subnetworks were the following: Default
mode, Somatomotor (hand), Cingulo-opercular task control, Fronto-
parietal task control, ventral attention, dorsal attention, memory/retrieval.
The omitted subnetworks were the following: Visual, Auditory, Cerebellar,
Somatomotor (mouth), Salience, Subcortical, and any node without a
subnetwork label. We note this partitioning was determined a priori, and
was the only partitioning approach tested. To demonstrate robustness, we
report analyses using both the entire network, as well as a 91-node atlas
based on the Harvard–Oxford anatomical atlas in the online supplemental
material. Those results generally replicated those described here, although
they were stronger (and more consistently significant) for the why–how
task than the temporal imagery task.

Figure 5. Box-plots for the segregation (clustering coefficient, left) and integration (global efficiency,
right) for each task and each atlas using a 10% threshold. Each pairwise comparison is significant using t
tests, with the exception of global efficiency in the temporal imagery task, which was marginally significant
for the 152- and 51-node atlas (ps � .053 and .057, respectively). See the online article for the color version
of this figure.
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